If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+x=250
We move all terms to the left:
5x^2+x-(250)=0
a = 5; b = 1; c = -250;
Δ = b2-4ac
Δ = 12-4·5·(-250)
Δ = 5001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5001}}{2*5}=\frac{-1-\sqrt{5001}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5001}}{2*5}=\frac{-1+\sqrt{5001}}{10} $
| 8(m-3)=4(m | | 7x-9-2x=19 | | 5x^2+x=25- | | 5y^2-15=10y+15 | | 14x-4=9x+17 | | 14=-16t^2+14t+36 | | 5n^2+17n-12=0 | | 3(x-10)-5+x-15=90 | | 7(d-7)=2(11+d) | | 60x^2-x=60 | | -23x-14=14x-23 | | 1100+4x=364 | | 2-(-4-6i)+3=0 | | (x+4)^2=2 | | 0=2-(-4-6i)+3 | | |x-4|+3=7 | | 4–6h–8h=60 | | 1/2=a-3/4 | | -10.6=m+11.1/0.5 | | 2(4)^(x-1)=28 | | n/2*3+7=19 | | 5(2y-1)=-39 | | X^2+12x=6000 | | 105=2x^2+x | | 50=1/2*9.8t^2 | | 2(4)^x-1=28 | | 7x-14+2=-6x+48 | | -9/5x=-2 | | 6(x+7)+3=-3(x-1)-5 | | 2(5y+3)=5 | | 100x=20(100) | | x^2+59x+564=0=0 |